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ABSTRACT

The high Reynolds number (Re) flow past a rapidly rotating circular cylinder is inves-
tigated. The rotation rate of the cylinder is allowed to vary (slightly) along the axis of the
cylinder, thereby provoking three-dimensional flow disturbances, which are shown to invoive
relatively massive (O(Re)) velocity perturbations to the flow away from the cylinder surface.

Additionally, three integral conditions, analogous to the single condition determined in
two dimensions by Batchelor (1), are derived, based on the condition of periodicity iu the
azimuthal direction.
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1 Introduction

Oue of the most important and fundamental theorems of Fluid Mechanics 1o have been
developed in relatively recent times is the closed streamline theory of Batehelor (1), This
states that in a two-dimensional flow involving closed streanilines

}( curlw - ds = 0, (1)

where w is the vorticity and ds the line element along a streamline At large Revnolds
numbers, when viscous effects can be neglected, this condition. taken with the inviscid
(Euler) equations of motion, leads to the result that the vorticity is constant within a region
of closed streamlines.

This theorem was generalised by Blennerhassett (2) to the sitnation which. rather thau
being one of closed streamlines, involves helical streamlines. Specifically a three-dimensional
flow with three velocity components, all of which are independent of the axial direction; this
implies constant axial pressure gradient. This analysis. in addition to confirming Batchelor's
(1) result, leads to an additional result linking the constant axial pressure gradient and the
viscous terms. This result, taken in conjunction with the inviscid flow equations yields the
result that the axial velocity must be proportional to the streamfunction for the motion in
the plane normal to the axial vector.

Little progress appears to have been made in further extending the ideas of Batchelor
(1) into the three-dimensional regime, in spite of the importance of flows of this type. It is
the aim of this paper to address this issue.

Two-dimensional flows involving closed streamlines involve additional interesting sub-
tleties. Even though the work of Batchelor (1) involves the inclusion of (small) viscous
effects, there is insufficient flow physics in the constant vorticity result to actually determine
its value. This must be determined by recourse to boundary-layer regions located on body
surfaces. Riley (3) presented an example of two-dimensional flow inside an elliptic container.
driven by slippage of the container walls. By Batchelor’s (1) theorem the flow in the core of
the container must be that of uniform vorticity, and Riley (3) showed how just one particular
value of the vorticity produced the appropriate behaviour (exponential decay at the outer
edge) inside the wall boundary layers. These ideas have subsequently been extended by other
authors to other situations (see below), including situations involving two wall layers. see
Duck (4).

One of the classical results of potential-flow theory is that of uniform flow past a circular
cylinder, with superimposed circulation. Physically this circulation may be caused by the
rotation of the cylinder. A number of authors have studied the relationship between the rate
of rotation and this circnlation. Glauert (8) considered the large Revnolds number, large
rotation rate problem, whilst Moore (6) considered the finite Reynolds number, large rotation
rate problemi. Lo~ (7) and Ingham (8) have considered fully numerical solutions (finite
Reynolds numbers, finite rotation rates), whilst Nikolayev (9)., Negoda and Svchev (10),
Sychev (11), Lam (12) have investigated the large Reynolds munber (finite rotation rate)
problem, partly using the ideas of Riley (3). There appears to be a monotonic relationship
between rotation rate and circulation, and the simple model of outer, potential flow together
with a unidirectional boundary layer ic anly appcaviate for ratation ratec above e critica)




value. As this eritical value is approached, a stagnation point forms off the surface of the
cylinder wall, but inside the boundary laver; this is sufficient to disrapt the entire model at
lower values of rotation rate.

In this paper we consider a three-dimensional analogne of the above problem. We take
a uniform, straight circular eylinder. and a uniform flow far from the evlinder directed
perpendicnlar to the axis of the cvlinder, and the eylinder surface is rotating with a large
angular velocity, which is dependent on axial location. We further supposce that the Reyvnolds
number (as defined in Section 2) is large. The restriction on large angular velocity renders
the problem tractable to analytic technignes, whilst pointing the way in which more general
rotation rates may be tackled. This analysis is presented in Section 3, and the corresponding
numerical results are in Section 4. In Section 5 we {ormulate three integral conditions,
analogous to the condition of Batchelor (1) described above. In Section 6 we present our
conclusions.




2 Formulation

We take a straight circular cyvlinder of radius a. together with polar coordinates (ar. 0. az).
with r measured radially, § azimuthally in an anti-clockwise direction and z axiallv. The
surface of the cylinder is rotating with angular velocity w + 5 cos Az, where w. 5 and A are
constants. Referred to the coordinate system described above, we suppose that far from the
cylinder the fluid velocity takes the form U (cos @, —sind.0). The flow Reyunolds numiber is
defined by

{a

Re = {2}

1%
where v is the kinematic viscosity of the fluid (assnmed constant). In this paper we are
primarily interested in the regime Re > 1.
Two further non-dimensional parameters may be defined. namely

n=" (3)
U
and a

describing the rate of rotation and degree of three-dimensionality introduced into the prob-
lem.

To make further progress in this paper, we assume that |¢| < 1 and further that {Q] > |
(but that € = o(§271)). Thus we focus our attention on small amounts of three-dimensionality
and high rotation rates.

We write the velocity vector as U/, u, and the pressure as pl.%p, where p is the density
of the fluid (assumed constant). We then develop the solution in powers of ¢, namely

u = ug+ca+ O, (5)
p = po+ep+O(H). (6)

Forr — 1 = O(1), when Re >» | we assumne the basic flow takes the form

1 1 Q :
uor.-(cosO(l——5>.——si110(1+—2->+—,0>, (1)
r r r

this being merely the potential flow solution. There also exists a boundary layver wherein
1 — 1 = O(Re™"%). The problem for uy in the boundary layer has been studied in the past
by a number of authors, as noted in the previous section. however as ) — oc,

ug — (0,92.0) + O(1) ()
for r — 1 = O(Re™/?).
The full problem for 0 is
V=10, ()
I _
u-Vuy+ug-Vi=-Vp+ E——Vzll (10)
o




with the following boundary conditions

[}

u

In the following section we cousider the solution of (10) as ¢ and Re — co.

= {(0,cos Az,0) on » =1,

— 0 as r — co.

—




3 The limits Re — o0, () - o

Siuce the perturbation velocity @ is triggered by an O(1) amount (see (11}) it is tempting
to speculate that this in turn will lead to general perturbation quantities away from the
cylinder of O(1). However this is certainly not the case. It turns out that the only plausible
solution for r = O(1), i.e. the only asymptotic development that leads to self-consistency
involves magnitudes very much larger than O(1).

Considering first the solution for » — 1 = O(1), then on account of the linearity of the
system (9), (10), we may write

u = (v(7,6‘)cos/\~, (r,8)cos Az, w(r.8)sin Az), {13
p(r,8) cos

g~
]

We also have (see (7)) that as Re — oc,

ug — (Vor, Qg0 + Un1, 0). (15)
where
[]00 = 1/1',
Vor = ( - —1-2—> cos b,
r
Uy = — (1 + -1-2-> sin 8. (16)
”

The only meaningful series development of the perturbation velocities turns out to be

v = QReuvy(r)+ -+ Reuvy{(r,0)+---,

u = Reuy(r,0) 4+ + w(r)+-

w = QRewy(r)+---+ Rew(r,0)+ -,

p = QRepo(r@)+- -+ Qp(r)+---. (17

These expansions prove to be the key to the solution of our problem, although a prior, it
is difficult to justify these expansions, and so a posteriori verification is therefore necessary.
In Sectic:s 3, some prima facie justification for this ferm of solution development is given.

Consider now the leading order terms in (17) that are independent of #. It turns out,
perhaps surprisingly, that the flow is not governed by the inviscid Euler equations, but
rather is predominantly viscous in nature. Taking O() terms in the radial momentnm
equation yields the following equation

l 4 iy
2 8] 3
—'——'+UUT7‘+'~UO1‘_A"O—"fv (1(\;
. 7 .

The O(Re™") terms in the azimuthal momentum equation yield

1 ' u:
Ugrr + ~Upp — /\2“2 _ _j = 0, (IQ)
r r

1}




whilst the O(£) terms in the axial momentum equation yield
! 2 .
Worr + —Wor ~ AWy = —Apy. (20)
N
The continuity equation, to leading order. may be written
1 .
vor + ~vg + Awp = 0. (21)
,

With this system there is no difficulty m imposing the full and correct boundary condi-
tions; we therefore have

ve(r=1) = we(r=1)=0,
wir=1) = 1, (22)
with
Vo, wo,uy — 0 as r — oo. (23)

The solution for u; can be written in terms of Bessel functions, namely

Ki(Ar) _
up = m, (24}

whilst 1t is possible to eliminate wq and py, from (18), (20), (21) to yield

ne 2 Iz :3 3 i
vg + ~vg — <72 + 2/\‘) Vg

1

300 2M%\ A 223 2uy A\ .
+(;§———-)UO + (/\ +_7T2—~;Z o = — 5 (29)

7

to which the following additional (alternative) boundary condition is appropriate
vel(r =1) = 0. (26)

Once u, is determined, it is quite straightforward (although a numerical task) to deter-
mine vo(r), wo(r); numerical results will be presented in the following section. It is worth
noting that vg, uy and wo, as described above, also represent an exact solution of the lin-
earised Navier Stokes equations ((9), (10)) in the absence of the uniform flow,

We now turn to consider the [eading order terms in (17) that are dependent upon both
r and 8 and which are, indeed, determined primarily through inviscid equations. Again, the
linear nature of (9), (10) greatly simplifies the solution technique, this time allowing us to

write
v = T(r)sind,
wy = TWy(r)cosf,
wy = Wy (r)sind.
Po = ﬁ”(r) cos (. (27)




We may also write

Vor = Vigicost,

Unn = Ty sin, (28)
with

Vm = (1“7%),

Uy = ~(1+;l;). (29)

Taking terms O(£ Re) in the radial, azimuthal and axial momentum equations respec-

tively, leads to .
— dvo ({V(n 171 Zﬁ] (1750

7 P A . 3
Vo dr v dr r? 92 dr’ (30)
dUp 1 Uss 1 31)
) _— —_—1y = —
Yoo~ 7 U1 Yo Po
— dw 1
‘/01‘-‘-{;‘9‘4""}*@—1 ——/\P()s (;2)
whilst continuity leads to
l (l - ﬁ] .
- —(7)) - — + Aw, =0. (33)
r dr r

On this system we may impose decay of all components of the solution as » — oo, whilst on
r = 1, we may have only
Ty(r=1)=0. (34)
The no-slip constraints on @, and @, are therefore violated, but these may be rectified by
the inclusion of a thin boundary layer of thickness O(€2"z R,e’%) onr =1,
Specifically, we write

Y = (r—1)Q% Re? = O(1), (35)
up = 1(Y)e + e, {36)
wy = i (Y)e? + e, (37)
and so
Wy = dyyy — iPy(l), (3%)
vy = unyy + Apy(l), (39)
giving
= =po(1) [} — eI (40)
Wy = —im,(l)[l—(-—“““”’/ﬁ]. (1)

We see therefore, that on the r — 1 = O(1) scale, intrigningly both viscons and inviscid
effects are important simaltaneously, and to a large degree, independentlv. Tn the following
section we consider a munber of numerical resnlts arising from the resnlts of this section.
and go on to consider the limits N — oo and A - 0,

-1




4 Results and large/small A behaviour

The system (22), (25), (305-(31) was solved using a conventional fourth arder Runge-Kutra
method. Results are shown in figure | for (e = 1) (- - - -} pie = 1) (sobdusjow, dr =
=== ). where the dependence of these quantities with A is shown,

We may make some further analvtic progress by considering the limits of large and small
A. Taking first A — o¢, then by (24)

Uy — eV (42)
where )
Y = A(r—=1) = O(1). (43)
i.e.
Udr)pey ™ —A. (;3)

The above implies the perturbation to the flow is confined to within a thin r = 1 = O(A™})
boundary layer (although we must impose the restriction that A = o(0: Re) in order that
this laver remains outside the Y = O(1) layer discussed in the previous section). After some
algebra, it is possible to show that

I . .

v = Ve 007, (45)
f—}’; } “1,2 J v -3 o

Wy = —:\—2‘— (1} -3 ) + ()(/\ ). (40)
-V 3 o

o= (/\ (; - }‘> +O(A?), (47)

gy = Ly Lya 3 39 Lo (48)

Po = 3 \8 T R g )" ’

Comparison of (47) evalnated on Y = 0 with the corresponding numerical results of figure |
shows good agreement as A increases. Unfortunately it is not possible to compare py(r = 1)
with (Y = 0) without further substantial algebra since 5,(Y = 0) = O(A™4).
The alternative limit of A — 0 is slightly more complicated. because two key radial
lengthscales emerge. For r = O(1). we have that (24) reduces to
l ,
Uy ~ =, (49}
-
which interestingly is the azimuthal veloeity component corresponding to a line vortex. e,
effectively the two-dimensional resnlt. Theve is also a large radial scale. B = Ar = O(1). {We
do have the restriction that A = o{€2) in order that over the lengthscales ander consideration.
{ 4o remains dominant over Ly in (16)),
For r = O(1). the solntion develops in the form

ro = M [log Mo(r) + O(1)]. {H0)




with the leading order general solution taking the form
. , va D .
Do = Ar+ Brilogr + Cr? + —. (H1)
N

For R = O(1), we must consider the first two leading terms in the solution development,
namely .
vo = A [log Ao R) + 01(R) + O((log 1)7")] . (52)
The complete analytic solution for to(R) and ©(R) does not appear possible, however it
suffices to consider the limit R — 0, for which

.., D _
o(R) ~ AoR + BoRlog R + (o R® + 7;“- (53)

whilst ©,{R) (which is forced directly by the u, term on the right-hand-side of {25) ) takes
the form

n(R) ~ AR+ BjRlog R+ C\R®

D, 1 3 .
= 4R(log R)*. (54)

Boundedness constraints demand
C=Do=D,=0, (53)

whilst matching of (49) as » — oo with (51) as R — 0 requires

1
BO = Ia (56)
1
B = —-. 57
: (5)
Further imposing the two boundary conditions on r = 1 yields
1 1 1
Vg = il logr — & (53)
This then leads to
1 :
wy = Ex\log/\]ogr—{—O(A), (59)
m o= —1/r (60)

Fortunately it is possible to determine the leading-order term of p; withont substantial
algebra {and additional numerical effort), even though p; is an order lower in log A than mayv
first be expected; equation (4.19) yields the result that py(r = 1) — —1 as A — 0. a result
that agrees with our numerical results. However it is not possible to determine jig(r = 1)
without further substantial algebra and numerical effort.

In the following section we go on to consider results for more general classes of two
dimensional flows involving closed streamlines, which are perturbed in some three-dimensional
manner.




5 The periodicity requirement and the associated in-
tegral conditions

The result of Bateh Jdor (11 may be viewed as aristng from a condition of periodiciny within
the region of closed streamlines of the varions physical low quantities. It is needed hecanse
the Enler equations are. themselves, not sutficient to enforee periodicity: an aiternative
viewpoint is that the Euler equations are unable to capture the mean tflow physies. e, the
flow corresponding to zero wavemumber, a result that is little surprising. This point is equally
important in the three-dimensional context. and is now investigated.

We may write '9). (10} in the form

UQ /\JJ"f"ltlAw'n:v}I'{‘ H(‘—‘v.f&;‘. '“i)
where [ is the O(¢) total lead. i.e.

H=p<4+u;-a. 162

and we have written the vorticity vector
w = wp + i+ Ofe?). (63)
Following Batchelor {1) and Blennerhassett (2) the work of this section is most efficiently
carried out in terms of a coordinate svstem based on the two-dimensional | undistnrbed
streamfunetion. specifically in terms of (0. €, z). Here v represents the streamfunction of

the undisturbed (u,) flow. and € is orthogonal to v and z: z remains the axial coordinate.
If the nndisturbed flow uyp is irrotational. then € may be taken to be the standard velocity
potential o. The infinitesimal line element is (—.l:zrlﬁ.d: . Here hy is the & roordinate
‘Io
metric, which in the case of an irrotational ug is merely 1/ and ¢ = jugl.
Referred to the (v €. ) coordinate system, the velocity vector may be written

U = ((reos Az go + cucos Az aesin Az) + Of€?), (64)

and the pressure as

P = po+ prros Az + O(?). (63)

Referred to the (v €. 2} coordinate svstem, we may write the vorticity terms as follows

Sy = (U.(‘).u)u)
i) .
= (0.0, 22 Z(h,q0)). (66)
/12 ()1.‘
< = {wysin Az sin Az wycos Az)

si Az .
= (e + Auk ) sin Az(=Ar — gouey)

,lz
gocos Az | 0 a [ 7
WA Ly - 2 (Y 6
hy () S ('10)) o
10




We may then write the three components of (61} in the following form

Uwp N whye o, ! ()(
qs h, Jo hy G€ \ q

1 dp  Re™' fdwy | _
= e 7 "‘T - /\}"Ju)_} . H'\‘f
Go OV hyqs | O
1 ()p 1 a

—twy = 4 (([()U)

hz ()f h, 713

).
+ Re™ [Aw,—qu(;)’} (69

) /\- o1 ) ) w' .
e N R L) = L (70
h, qo hy Ldy A&\ qo

The continuity equation, in terms of these variables is

0 Jd [ u Awh,
—(hyv — | — = 0. 7l
()‘z,’:( rav) + g€ ((/0) + o (Y

If we integrate each of (68)-(71) around a complete circuit in € (lying entirely within a region
of closed streamlines), then periodicity of the flow demands

uf hy, Jp
f{hﬁi‘i’i +  uhyy = qoy— 2P

% qo o O

Re™! Jws .
({é [—('}'5— -— )\hzwz]}(l£ ::ﬂ (l.’f}
Huws , —
f {UUJO + R(" [/\w] — Jo—> } } ,l-gdé = (], (4‘)

oy

— AP -1
FL2 R e = 0 (1)
Jo hy dy

These results are quite general, and indeed exact within the framework of the linearised
Navier Stokes equations (9), (10). If we now direct onr attention on the problem considered
earhier in this paper, then ug is irrotational, and so in line with onr comments regarding €

above, we can write
I ap i Aw
% {quL u+ — + Re” [(———1 - wi} } df =0, {
. ([() ) ()f o

Aw
f[ ! -_———} dE = 0. (76)
o i )
—Ap ()
}{{ T Rje? L(/W,)}dg _ (771
a5 A

Note that the result of Batchelor (1) s retrieved from (76) by allowing A — 0,

-1

-t
—
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At this stage we can partls  lirm the solution develupment of Section 3. Equation {77)
above strongly snggests that wy = O (Re), which in turn snggests that v and/or u must
also be O{Re). This is partly confirmed by (75). Tndeed. it can he shown that our solntions
given in Section 3 do satisfy the above conditions, which clearly illustrate the importance of

viscosity on the r — 1 = O(1) scale.

[ S8




6 Conclusions

In this paper we have considered the effects of three-dimensionabity introdnced i the
problem of a rapidly rotating cirenlar evlinder in a uniform How. The effects nchnde 4
snbstantial ((O(Re)) response in the three velocity componentssin the bholk of the faid s
effect is confirmed by the analvsis of Section 5 i which three integral conditions were derived
(analogous to the solitary integral condition in Batchelor's (1) two dimensional worky, All
the indications are that this massive response with three dimensionality will e a eenerie
feature of similar Hows. Tt is likely that the resnlis of this paper have reperenssions for
mmportant practical applications, perhaps the most important of whicl being that of high
lift aerofoils.

Thix paper has deliberately focused on the large rotation rate problem (e Q@ =~
However the extremely important regime of 2 = O(1) remains to be stadied. This reeime
imvolves a sumber of additional questions. perhaps the key aspect being the natnre of the
solution as the closed streamline region of the base (two-dimensional) flow i< exited. Tt conld
well be that some form of mild discontinuity exists, for which a thin shcar Taver wounld he
required. This whole problem would be a non-trivial mnmerical undertaking, it it i< 1o he
expected that the O(Re) velocity scales will persist. Equally we have implicithy assimed
here that 0 # ()(Ro%). n positive integer. althongh if this condition is relaxed, it seens
likely that the solution will be modified, hut in a relatively mivor manner,

The ¢ = O(1) problem. at this stage. wonld appear to he a formidable taske gquite possibly
involving a solution of the full Navier Stokes equations. Finallv., although onr study has
concentrated on sinusoidal disturbances, in the axial direction 3t is of course strafght forward

to extend our ideas to non-periodic axial disturbances using standard transform technigues.
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